
Problem 1. Determine whether the following statements are true or false.
If true then prove it, and if false then provide a counterexample.

(1) Suppose an > M for n� 1 and lim an = L. Then, L > M .

(2) Suppose lim a2n = L. Then, lim an =
√
L.

(3) Suppose {anbn} and {an} converge. Then, bn also converges.
(4) Suppose {an} and {bn} with bn 6= 0 are bounded. Then, an/bn is

also bounded.
(5) Suppose a non-empty set S has its supremum. Then, the set S2 =
{s2 : s ∈ S} has its supremum and (supS)2 = supS2.

(6) A sequence of open intervals In = (an, bn) satisfies In+1 ⊂ In and
lim |bn − an| = 0. Then, there exists a number L such that lim an =
lim bn = L and L ∈ In.

(7) If lim an = M , then lim |an| = |M |.
(8∗) A sequence {n2an} converges. Then, the series

∑
an converges.

(9) Let an and bn be Cauchy sequences. Then, anbn is also a Cauchy
sequence.

(10) Let an > 0 be a Cauchy sequence. Then, 1
an

is also a Cauchy se-
quence.

(11) Let f(x) be defined for x ≈ x0 and lim
x→x0

f(x) = L. Then, L = f(x0).

(12) Let f(x) be a bounded function defined for x ≈ 0. Then, xf(x) is
continuous at 0.

(13) Suppose that f(x) has both of the right- and left- hand limits. Then,
f(x) has the limit at x0.

(14) Let f(x) be an increasing function defined on an interval [0, 1]. Then,
f(x) is left-continuous at 1.

(15∗) Let f(x) be an increasing function defined on an interval [0, 1]. Then,
f(x) has the left-hand limit at 1.

Proof for (1). False. Let an = 1
n and M = 0. Then, an > M and L =

lim an = 0. Thus, M = L, not L > M . �

Proof for (2). False. Let an = (−1)n. Then, a2n = 1 and thus lim a2n = 1.
However, a2m = 1 and a2m+1 = −1. Therefore, there are subsequences of an
converging to different limits. Thus, an can not converge by the subsequence
theorem and the uniqueness of the limit. �

Proof for (3). False. Let an = 0 and bn = n. Then, anbn = 0 and an = 0
are constant sequence and therefore converge. However, bn diverges. �

Proof for (4). False. Let an = 1 and bn = 1
n . Then, 0 ≤ an, bn ≤ 1.

However, an/bn = n is unbounded. �
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Proof for (5). False. Let S = (−∞, 0]. Then, supS = 0. However, S2 =
(−∞,+∞) and thus supS2 does not exist. �

Proof for (6). False. Let In = (0, 1n). Then, In+1 ⊂ In, lim |bn − an| =

lim 1
n = 0, and lim an = lim bn = 0. However, 0 6∈ In. �

Proof for (7). True. If M = 0, then given ε > 0 we have |an| = |an− 0| < ε
for n� 1. Thus,

∣∣|an| − |0|∣∣ = |an| < ε for n� 1.
If M > 0, then given ε > 0 we have an ≥ 0, |an −M | < ε for n � 1.

Thus,
∣∣|an| − |M |∣∣ = |an −M | < ε for n� 1.

If M < 0, then given ε > 0 we have an ≤ 0, |an −M | < ε for n � 1.
Thus,

∣∣|an| − |M |∣∣ = | − an +M | < ε for n� 1. �

Proof for (8). True. By the test for divergence, we have limn2an = 0.
Therefore, we have |n2an| ≤ 1 for n� 1, namely |an| ≤ 1

n2 for n ≥ N where
N is a large constant.

Since
∑∞

N
1
n2 converges by the proof of Example 7.5A in page 104, the

comparison theorem
∑∞

N |an| converges. Hence, the tail-convergence theo-
rem |an| converges. Therefore, an is absolutely convergent. �

Proof for (9). True. Since an, bn are Cauchy sequences, they are conver-
gent. Hence, anbn is also convergent to its limit L by the multiplication
theorem. Therefore, given ε > 0 we have |anbn−L| < ε/2 for n ≥ N . Thus,
|anbn − ambm| < ε for n,m ≥ N . �

Proof for (10). False. Let an = 1/n. Then, 1/an = n diverges. So, it is not
a Cauchy sequence, since every Cauchy sequence must converge. �

Proof for (11). False. Let f(x) = 0 for x 6= 0 and f(0) = 1. Then,
lim
x→0

f(x) = 0 6= 1 = f(0). �

Proof for (12). True. Since f(x) is bounded for x ≈ 0, there exists some
numbers M, δ > 0 such that |f(x)| ≤ M holds for x ∈ (−δ, δ). Therefore,
given ε > 0 we have

|xf(x)− 0f(0)| = |x||f(x)| ≤M |x| < ε,

for x ∈ (−ε/M, ε/M) ∩ (−δ, δ). Namely, xf(x) is continuous at 0. �
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Proof for (13). False. Let f(x) = −1 for x < 0 and f(x) = 1 for x > 0.
Then, lim

x→0+
f(x) = 1 and lim

x→0−
f(x) = −1. Assume that f(x) has the

limit L. Then, there exists δ > 0 such that |f(x) − L| < 1 holds for x ∈
(−δ, δ) \ {0}. So, |1−L| = |f(δ/2)−L| < 1 and |1 +L| = |f(δ/2)−L| < 1.
Thus, we have a contradiction 2 ≤ |1− L|+ |1 + L| < 2. �

Proof for (14). False. Let f(x) = x for x ∈ [0, 1) and f(1) = 2. Then, f(x)
is increasing. However, |f(x)− 2| = 2− x ≥ 1 for x ∈ [0, 1), namely f(x) is
not left-continuous at 1. �

Proof for (15). True. Let I = [0, 1). Then, f(1) is an upper bound for
f(I), since f(x) ≤ f(1) for x ∈ I. Thus, by the completeness property of
sets, f(I) has the supremum m̄.

We now claim that m̄ is the left-hand limit of f(x) at 1. For every n ∈ N,
there exists a number xn ∈ I such that m̄− 1

n < f(xn) ≤ m̄. So, given ε > 0
we choose a number N > 1/ε. Since f(x) is increasing

m̄− ε < m̄− 1

N
< f(xN ) ≤ f(x) ≤ sup f(I) = m̄,

holds for x ∈ (xN , 1) ⊂ I. Thus, |m̄− f(x)| < ε for x ∈ (1− xN , 1), namely
m̄ is the left-hand limit.

�

Problem 2. Determine whether the following sequences are convergent or
divergent. If convergent, find the limit and explain why it is the limit. If
divergent, explain why the sequence is not convergent.

(1) an =
(−1)nn

2n+ 1
(2) an =

n3

3n
(3) an =

2n + 1

3n + n3
(4∗) an =

n!

nn

(5)an+1 =
(an

2

)2
, a0 < 4, (6)an+1 =

(an
2

)2
, a0 > 4.

(7∗)4an+1 = 5− a2n, 0 < a0 < 2, (8)an+1 =
√

2an − 1, a0 > 1.

Fact needed for (4∗) : lim(1 + 1
n)n = e ≈ 2.71828.... > 1.

Proof for (1). Diverges. We have

a2m =
2m

4m+ 1
=

1

2 + 1
2m

, a2m−1 = −2m− 1

4m− 1
= −

1− 1
2m

2− 1
2m

.

Hence, Theorem 5.1 implies lim a2m = 1
2 and lim a2m−1 = −1

2 . So, if we

assume an converges to L, then we have L = 1
2 = −1

2 by the subsequence
theorem and the uniqueness of the limit. Therefore, an can not converge. �
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Proof for (2). Converges to 0. We have

|an+1

an
| = (n+ 1)3

3n3
=

(1 + 1
n)3

3
.

Hence, lim 1
n = 0 and Theorem 5.1 implies lim |an+1

an
| = 1

3 < 1. Therefore,

the series
∑
an converges absolutely by the ratio test. Hence, lim an = 0 by

the test for divergence. �

Proof for (3). Converges to 0. We have

|an+1

an
| = 2n+1 + 1

2n + 1
· 3n + n3

3n+1 + (n+ 1)3
=

2 + 1
2n

1 + 1
2n
·

1 + n3

3n

3 + 3 (n+1)3

3n+1

.

Theorem 3.4 shows lim 1
2n = 0. Also, the proof for (2) shows lim n3

3n = 0.

Therefore, Theorem 5.1 implies lim |an+1

an
| = 2

3 < 1. Thus, the series
∑
an

converges absolutely by the ratio test. Hence, lim an = 0 by the test for
divergence. �

Proof for (4). Converges to 0. We have an+1 = (n+1)!
(n+1)n+1 = n!

(n+1)n . Thus,

|an+1

an
| = nn

(n+ 1)n
=
( n

n+ 1

)n
=
(

1 +
1

n

)−n
.

Therefore, the fact lim(1 + 1
n)n = e and Theorem 5.1 implies lim |an+1

an
| =

e−1 < 1. Thus, the series
∑
an converges absolutely by the ratio test.

Hence, lim an = 0 by the test for divergence. �

Proof for (5). Converges to 0. We have a1 = (a0/2)2 < (4/2)2 = 4 and
a1 > 0. Next, if 0 < ak < 4 holds for some integer k, then ak+1 = (ak/2)2 <
(4/2)2 = 4 and ak+1 > 0. Therefore, we have 0 < an < 4 for all n by the
mathematical induction.

Hence, an+1 = (an/2)2 = an · (an/4) < an, namely an is decreasing.
Therefore, an converges by the comparison theorem.

Let L = lim an. Then, L = lim an+1 = lim a2n/4 = 1
4 lim a2n = 1

4(lim an)2 =
L2

4 by Theorem 5.1. Therefore, L = 0 or 4. However, we have an < a0 and
thus L ≤ a0 < 4 by the limit location theorem, namely L 6= 4. So, 0 is the
limit. �
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Proof for (6). Diverges. We have a1 = (a0/2)2 > (4/2)2 = 4. Next,
if ak > 4 holds for some integer k, then ak+1 = (ak/2)2 > (4/2)2 = 4.
Therefore, we have an > 4 for all n by the mathematical induction.

Hence, an+1 = (an/2)2 = an · (an/4) > an, namely an is increasing.
We assume that an converges to L. Then, L = lim an+1 = lim a2n/4 =

1
4 lim a2n = 1

4(lim an)2 = L2

4 by Theorem 5.1. Therefore, L = 0 or 4. How-
ever, an > a0 and the limit location theorem shows L ≥ a0 > 4, namely
L 6= 0, 4. Therefore, an diverges. �

Proof for (7). Converges to 1. Let en denote an − 1. Then,

4en+1 = 4an+1 − 4 = 1− a2n = (1− an)(1 + an) = −en(en + 2).

Since |e0| < 1, we have |e1| = 1
4 |e0||e0 +2| ≤ 1

4 |e0|(|e0|+2) < 3
4 . In addition,

if |ek| < (34)k for some k, then

|ek+1| =
1

4
|ek||ek + 2| ≤ |ek|+ 2

4
|ek| <

3

4

(3

4

)k
=
(3

4

)k+1
.

Thus, −(34)n < en < (34)n holds for all n by mathematical induction. By

Theorem 3.4, lim(34)n = 0. Hence, by the squeeze theorem, lim en = 0,
namely lim an = 1. �

Proof for (8). Converges to 1. We have a1 =
√

2a0 − 1 >
√

2− 1 = 1.
Moreover, if ak > 1 for some k, then ak+l =

√
2ak − 1 >

√
2− 1 = 1.

Therefore, by mathematical induction, an > 1 holds for all n.
Next, we observe

an+1 =
√

2an − 1 ≤ an
⇐⇒ 2an − 1 ≤ a2n (because an, an+1 > 0)

⇐⇒ 0 ≤ a2n − 2an + 1 = (an − 1)2.

Therefore, an is decreasing. Hence, by the completeness property, an con-
verges.

Let L be the limit of an. Then, a2n+1 = 2an − 1 and Theorem 5.1 shows

2L− 1 = lim 2an − 1 = lim a2n+1 = (lim an+1)
2 = L2.

Thus, (L− 1)2 = L2 − 2L+ 1 = 0, namely L = 1. �

Problem 3. Let an+1 = 2
1+an

and a0 > 1.

(1) Show that the subsequence of even terms a2n is decreasing and bounded
below, and the subsequence of odd terms a2n−1 is increasing and
bounded above.

(2) Show the convergence of an, and fine the limit.
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Proof for (1). We have

an+2 =
2

1 + an+1
=

2

1 + 2
1+an

=
2(1 + an)

(1 + an) + 2
=

2an + 2

an + 3
.

Regarding a2n, the condition a0 > 1 yields

a2 =
2a0 + 2

a0 + 3
>
a0 + 3

a0 + 3
= 1.

In addition, if a2k > 1 for some k, then a2k+2 = 2a2k+2
a2k+3 > a2k+3

a2k+3 = 1. So, by

mathematical induction, a2n > 1 holds for all n.

a2n+2 =
2a2n + 2

a2n + 3
≤ a2n ⇐⇒ 2a2n + 2 ≤ a22n + 3a2n

⇐⇒ 0 ≤ a22n + a2n − 2.

Thus, a2n > 1 implies a2n+2 ≤ a2n. So, a2n is decreasing and bounded below
by 1.

Regarding a2n+1, the condition a0 > 1 yields a1 = 2
1+a0

< 2
1+1 = 1. So,

a3 =
2a1 + 2

a1 + 3
<
a1 + 3

a1 + 3
= 1.

In addition, if a2k+1 > 1 for some k, then a2k+3 =
2a2k+1+2
a2k+1+3 <

a2k+1+3
a2k+1+3 = 1.

So, by mathematical induction, a2n+1 < 1 holds for all n.

a2n+3 =
2a2n+1 + 2

a2n+1 + 3
≥ a2n+1 ⇐⇒ 2a2n+1 + 2 ≥ a22n+1 + 3a2n+1

⇐⇒ 0 ≥ a22n+1 + a2n+1 − 2.

Thus, a2n+1 < 1 implies a2n+3 ≥ a2n+1. So, a2n+1 is increasing and bounded
above.

�

Proof for (2). By the result of (1) and the completeness property, lim a2n =
L and lim a2n+1 = M exist. Moreover, the limit location theorem shows
L ≥ 1. Theorem 5.1 and 2 = an+1(1 + an) lead to

2 = lim a2n+1(1 + a2n) = lim a2n+1 + (lim a2n+1)(lim a2n) = M + LM,

and

2 = lim a2n(1 + a2n−1) = lim a2n + (lim a2n)(lim a2n−1) = L+ LM.

So, M = L = 2 − ML, namely lim an = L. Hence, 0 = L2 + L − 2 =
(L+ 2)(L− 1), namely L = 1 or −2. Since L ≥ 1, we have lim an = 1.

�

Problem 4. Let an+1 = 1
2+an

and a0 > 0.

(1) Show that {an} is a Cauchy sequence.
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(2) Find the limit of {an} and explain why it is the limit.

Proof for (1). a0 > 0 gives a1 = 2
1+a0

> 0. If ak > 0 for some k, then

ak+1 = 2
1+ak

> 0. By mathematical induction, an > 0 for all n. Also,

|a2 − a1| =
∣∣∣ 1

2 + a1
− 1

2 + a0

∣∣∣ =
|a1 − a0|

(2 + a0)(2 + a1)
<

1

4
|a1 − a0|.

If |ak+1 − ak| < (14)k|a1 − a0| for some k,

|ak+2 − ak+1| =
∣∣∣ 1

2 + ak+1
− 1

2 + ak

∣∣∣ =
|ak+1 − ak|

(2 + ak)(2 + ak+1)

<
1

4
|ak+1 − ak| <

(1

4

)k+1
|a1 − a0|.

By mathematical induction, |an+1−an| < (14)n|a1−a0| for all n. Hence, for
m > n, we have

|am − an| ≤
m−1∑
k=n

|ak+1 − ak| ≤
m−1∑
k=n

(1

4

)k
|a1 − a0| ≤

|a1 − a0|
4n

m−n−1∑
k=0

(1

4

)k
=
|a1 − a0|

4n
1− 1

4m−n−1

1− 1
4

≤ |a1 − a0|
3

(1

4

)n−1
.

By Theorem 3.4, given ε > 0, |am − an| < ε holds for n,m� 1. �

Proof for (2). Since an is a Cauchy sequence, an converges to its limit L.

1 = lim an+1(2 + an) = 2 lim an+1 + (lim an+1)(lim an) = 2L+ L2,

namely 0 = L2 + 2L− 1. Hence, L = −1±
√

2.
On the other hand, an > 0 implies L ≥ 0. Thus, L = −1 +

√
2. �

Problem 5. Let S, T be non-empty sets bounded above. Suppose s, t > 0
holds for all s ∈ S and t ∈ T . Then, we have (supS)(supT ) = supST ,
where ST = {st : s ∈ S, t ∈ T}.

Proof. By completeness property for sets, supS and supT exist. Since s, t >
0, 0 < s ≤ supS and 0 < t ≤ supT yields st ≤ (supS)(supT ), namely
(supS)(supT ) is an upper bound for ST . Therefore,

supST ≤ (supS)(supT ).

For a fixed s ∈ S, st ≤ supST shows that t ≤ (supST )/s holds for all
t ∈ T . Therefore, supT ≤ (supST )/s, namely s supT ≤ supST holds for
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all s ∈ S. Since supT ≥ t > 0, we have s ≤ (supST )/(supT ), namely
supS ≤ (supST )/(supT ). Hence,

supST ≥ (supS)(supT ).

In conclusion, supST = (supS)(supT ).
�

Problem 6. Determine whether the following series are convergent or di-
vergent, and explain why they are convergent or divergent.

(1)

∞∑
n=1

n

2n+ 1
(2)

∞∑
n=1

n3

3n
(3)

∞∑
n=1

(−1)n√
n+ 1

(4)

∞∑
n=1

2n

n2 + 1
.

Proof for (1). Diverges. n
2n+1 = 1

2+ 1
n

, lim 1
n = 0, and Theorem 5.1 give

lim
n

2n+ 1
= lim

1

2 + 1
n

=
1

2 + 0
=

1

2
6= 0.

By the test for divergence, it diverges. �

Proof for (2). Converges. We have∣∣∣an+1

an

∣∣∣ =
1

3

(n+ 1)3

n3
=

1

3
lim
(

1 +
1

n

)3
.

So, lim 1
n = 0 and Theorem 5.1 lead to lim |an+1

an
| = 1

3 < 1. Hence, by the
ratio test, it converges. �

Proof for (3). Converges. Since 1√
n+1

is decreasing and converges to zero,

the Cauchy’s test guarantees the its alternating form is convergent. �

Proof for (4). Diverges. The proof of Example 7.5A in the textbook shows∑ 1
n tends to infinity, namely

∑ 2
n tends infinity. Moreover, we have

lim

∣∣∣∣ 2
n
2n

n2+1

∣∣∣∣ = lim
n2 + 1

n2
= lim 1 +

1

n2
= 1.

Therefore, by the asymptotic comparison test,
∑ 2n

n2+1
also diverges. �

Problem 7. Find the radius of convergence of the following power series,
and explain why.

(1)

∞∑
n=0

x2n

3n
(2)

∞∑
n=1

xn

2n(n+ 1)
.
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Proof for (1). For a fixed x, we have

lim n
√
|x2n3−n| = limx2/3 = x2/3.

Hence, by the root test, the power series converges if x2/3 < 1 and diverges
if x2/3 > 1, namely converges if |x| <

√
3 and diverges if |x| >

√
3. Hence,√

3 is the radius of convergence. �

Proof for (2). If x = 0, it converges to zero. Given a fixed x 6= 0, we define
an = xn

2n(n+1) . Then,∣∣∣an+1

an

∣∣∣ =
|x|n+1

|x|n
2n

2n+1

n+ 1

n+ 2
=
|x|
2

1 + 1
n

1 + 2
n

.

Combining with lim 1
n = 0 and Theorem 5.1 yields lim |an+1

an
| = |x|

2 . Hence,

by the ratio test, the power series converges if |x|/2 < 1 and diverges if
|x|/2 > 1, namely converges if |x| < 2 and diverges if |x| > 2. Hence, 2 is
the radius of convergence. �

Problem 8 (Very challenging). Let f(x) be a continuous function defined
on R. Suppose that f(m2−n) ≥ 0 holds for all integer m ∈ Z and natural
number n ∈ N. Show that f(x) ≥ 0 holds for all x ∈ R.

Proof. Let Y denote the set of m2−n. Given a point x, we will construct a
sequence yn ∈ Y converging to x. First of all, we let y0, y1 be the integers
m,m+ 1 such that m ≤ x < m+ 1, and let I1 = [y0, y1] = [a1, b1]. Next, we

set y2 = a1+b1
2 = 2m−1

2 ∈ Y. Then, x must be contained in at least one of
[a1, y2] and [y2, b1]. So, we let I2 = [a2, b2] be the half interval containing x,
and then |b2 − a2| = 1

2 .
We assume that we can iterate the halving process until obtaining Ik =

[ak, bk] with ak, bk ∈ Y and |bk − ak| = 1
2k−1 . Then, we have ak = pk2−qk

and bk = rk2−sk for some integers p, rk and natural numbers qk, sk. Hence,
we can set

yk+1 =
ak + bk

2
=
pk2sk + rk2qk

2qk+sk+1
∈ Y.

Then, x must be contained in at least one of [ak, yk+1] and [yk+1, bk]. So, we
let Ik+1 = [ak, bk] be the half interval containing x, and then |bk+1−ak+1| =
1
2k

and ak+1, bk+1 ∈ Y.
Hence, by mathematical induction, there exist a nested sequence of closed

intervals In = [an, bn] with an, bn ∈ Y and |bn − an| = 1
2n−1 . Since Theorem

3.4 implies lim 1
2n−1 = 0, the nested interval theorem shows that there exists

L ∈ In and lim an = lim bn = L. Moreover, an ≤ yn+1 ≤ bn and the squeeze
theorem give lim yn = L. In addition, we have x = L, because x, L ∈ In
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shows |x− L| < 1
2n−1 for all n. In conclusion, there exists yn ∈ Y such that

lim yn = x.

Since f(x) is continuous, Theorem 11.5A shows lim f(yn) = f(x). Hence,
f(yn) ≥ 0 and the limit location theorem for sequences, we have the desired
result f(x) ≥ 0. �

Problem 9. Let f(x) be a bounded function defined on R, and let F (x) =∫ x
0 f(t)dt. Show that F (x) is continuous on R.

Proof. Since f(x) is bounded, |f(x)| < M for some M > 0. Hence,

|F (x)− F (y)| =
∣∣∣ ∫ x

0
f(t)dt−

∫ y

0
f(t)dt

∣∣∣ =
∣∣∣ ∫ x

y
f(t)dt

∣∣∣.
We set f+(t) = max{f(t), 0} ≥ 0 and f−(t) = max{−f(t), 0} ≥ 0. Then,
f = f+−f− and |f | = f++f−. Without loss of generality, we assume y ≥ x.
Then, the triangle inequality shows∣∣∣ ∫ x

y
f(t)dt

∣∣∣ =
∣∣∣ ∫ x

y
f+(t)dt−

∫ x

y
f−(t)dt

∣∣∣ ≤ ∣∣∣ ∫ x

y
f+(t)dt

∣∣∣+
∣∣∣ ∫ x

y
f−(t)dt

∣∣∣
=

∫ x

y
f+(t) + f−(t)dt =

∫ x

y
|f(t)|dt <

∫ x

y
Mdt = M |y − x|.

Therefore, given ε > 0, we have |F (x0) − F (x)| < M |x0 − x| < ε for x ∈
(x0− ε/M, x0 + ε/M). Namely, F (x) is continuous at any point x0 ∈ R. �

Problem 10. Suppose that f(x) is a continuous function defined on R, and

f(x) ≥ 0 holds for all x ∈ R. Show that g(x) =
√
f(x) is continuous on R.

Proof. If f(x0) = 0 at some point x0. Since f(x) is continuous, given ε > 0,
|f(x)| < ε2 holds for x ≈ x0, namely |g(x)| < ε for x ≈ x0.

If f(x0) > 0 at some point x0. Then,

|g(x0)− g(x)| =
∣∣∣ f(x0)− f(x)√

f(x0) +
√
f(x)

∣∣∣ ≤ |f(x0)− f(x)|√
f(x0)

.

Since f(x) is continuous, given ε > 0, |g(x0) − g(x)| < ε
√
f(x0) holds for

x ≈ x0, namely |g(x0)− g(x)| < ε for x ≈ x0. �

Problem 11. Suppose that a continuous function f(x) is defined on [a, b]
with a 6= b, and f(x) is strictly increasing on (a, b). Show that f(x) is
strictly increasing on [a, b].
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Proof. Assume that f(b) ≤ f(c) for some c ∈ (a, b). Since f is strictly in-
creasing on (a, b), we have f(b) ≤ f(c) < f(m) where m = b+c

2 . On the other
hand, f(m) < f(x) for all x ∈ (m, b). Therefore, the limit location theorem
yields f(b) = lim

x→b−1
f(x) ≥ f(m), which contradicts to f(m) > f(c) ≥ f(b).

Hence, f(b) > f(c) for all (a, b), namely f(x) is strictly increasing on (a, b].
In the same manner, we can show that f(x) is strictly increasing on [a, b]

by assuming that f(a) ≥ f(c) for some c ∈ (a, b]. �

Problem 12. Suppose that f(x), g(x) are continuous functions defined on
R. Show that the function h(x) = max{f(x), g(x)} is continuous on R.

Proof. Given a point x0, we assume f(x0) ≥ g(x0) without loss of generality,
namely h(x0) = f(x0).

If f(x0) = g(x0), then given ε > 0 we have |f(x) − h(x0)| < ε, |g(x) −
h(x0)| < ε for x ≈ x0. Then, |h(x)− h(x0)| < ε for x ≈ x0, because h(x) is
one of f(x) and g(x).

If σ = f(x0) − g(x0) > 0, then we have |f(x) − f(x0)| < σ/2, |g(x) −
h(x0)| < σ/2 for x ≈ x0. Thus,

f(x)− g(x) =
(
f(x0)− g(x0)

)
+
(
f(x)− f(x0)

)
+
(
g(x0)− g(x)

)
≥σ − |f(x)− f(x0)| − |g(x)− g(x0)| > 0,

holds for x ≈ x0, namely f(x) = h(x) for x ≈ x0. Hence, h(x) is continuous
for x ≈ x0. �

Sample Exam

Solutions for problem 1-5 are given in the proofs above. Sure, the exam
problems will be a bit different form the practice problems.

For problems 6 and 7, let me give you answer keys and hints. You can try
to prove them during the spring break. The bonus problems in the exam
will have totally different style from the practice problems and sample exam
problems.

6. Possible Answers: x2 sin(1/x),
∫ 1
x sin(1/t)dt.

7. Hint: consider the 2nd order derivative of 1+x+ · · ·+xn and plug x = 1
2 .


