Problem 1. Determine whether the following statements are true or false. If true then prove it, and if false then provide a counterexample.
(1) Suppose $a_{n}>M$ for $n \gg 1$ and $\lim a_{n}=L$. Then, $L>M$.
(2) Suppose $\lim a_{n}^{2}=L$. Then, $\lim a_{n}=\sqrt{L}$.
(3) Suppose $\left\{a_{n} b_{n}\right\}$ and $\left\{a_{n}\right\}$ converge. Then, b_{n} also converges.
(4) Suppose $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ with $b_{n} \neq 0$ are bounded. Then, a_{n} / b_{n} is also bounded.
(5) Suppose a non-empty set S has its supremum. Then, the set $S^{2}=$ $\left\{s^{2}: s \in S\right\}$ has its supremum and $(\sup S)^{2}=\sup S^{2}$.
(6) A sequence of open intervals $I_{n}=\left(a_{n}, b_{n}\right)$ satisfies $I_{n+1} \subset I_{n}$ and $\lim \left|b_{n}-a_{n}\right|=0$. Then, there exists a number L such that $\lim a_{n}=$ $\lim b_{n}=L$ and $L \in I_{n}$.
(7) If $\lim a_{n}=M$, then $\lim \left|a_{n}\right|=|M|$.
(8^{*}) A sequence $\left\{n^{2} a_{n}\right\}$ converges. Then, the series $\sum a_{n}$ converges.
(9) Let a_{n} and b_{n} be Cauchy sequences. Then, $a_{n} b_{n}$ is also a Cauchy sequence.
(10) Let $a_{n}>0$ be a Cauchy sequence. Then, $\frac{1}{a_{n}}$ is also a Cauchy sequence.
(11) Let $f(x)$ be defined for $x \approx x_{0}$ and $\lim _{x \rightarrow x_{0}} f(x)=L$. Then, $L=f\left(x_{0}\right)$.
(12) Let $f(x)$ be a bounded function defined for $x \approx 0$. Then, $x f(x)$ is continuous at 0 .
(13) Suppose that $f(x)$ has both of the right- and left- hand limits. Then, $f(x)$ has the limit at x_{0}.
(14) Let $f(x)$ be an increasing function defined on an interval $[0,1]$. Then, $f(x)$ is left-continuous at 1.
(15*) Let $f(x)$ be an increasing function defined on an interval $[0,1]$. Then, $f(x)$ has the left-hand limit at 1.

Proof for (1). False. Let $a_{n}=\frac{1}{n}$ and $M=0$. Then, $a_{n}>M$ and $L=$ $\lim a_{n}=0$. Thus, $M=L, \operatorname{not} L>M$.

Proof for (2). False. Let $a_{n}=(-1)^{n}$. Then, $a_{n}^{2}=1$ and thus $\lim a_{n}^{2}=1$. However, $a_{2 m}=1$ and $a_{2 m+1}=-1$. Therefore, there are subsequences of a_{n} converging to different limits. Thus, a_{n} can not converge by the subsequence theorem and the uniqueness of the limit.

Proof for (3). False. Let $a_{n}=0$ and $b_{n}=n$. Then, $a_{n} b_{n}=0$ and $a_{n}=0$ are constant sequence and therefore converge. However, b_{n} diverges.

Proof for (4). False. Let $a_{n}=1$ and $b_{n}=\frac{1}{n}$. Then, $0 \leq a_{n}, b_{n} \leq 1$. However, $a_{n} / b_{n}=n$ is unbounded.

Proof for (5). False. Let $S=(-\infty, 0]$. Then, $\sup S=0$. However, $S^{2}=$ $(-\infty,+\infty)$ and thus sup S^{2} does not exist.

Proof for (6). False. Let $I_{n}=\left(0, \frac{1}{n}\right)$. Then, $I_{n+1} \subset I_{n}, \lim \left|b_{n}-a_{n}\right|=$ $\lim \frac{1}{n}=0$, and $\lim a_{n}=\lim b_{n}=0$. However, $0 \notin I_{n}$.

Proof for (7). True. If $M=0$, then given $\epsilon>0$ we have $\left|a_{n}\right|=\left|a_{n}-0\right|<\epsilon$ for $n \gg 1$. Thus, $\left|\left|a_{n}\right|-|0|\right|=\left|a_{n}\right|<\epsilon$ for $n \gg 1$.

If $M>0$, then given $\epsilon>0$ we have $a_{n} \geq 0,\left|a_{n}-M\right|<\epsilon$ for $n \gg 1$. Thus, $\left|\left|a_{n}\right|-|M|\right|=\left|a_{n}-M\right|<\epsilon$ for $n \gg 1$.

If $M<0$, then given $\epsilon>0$ we have $a_{n} \leq 0,\left|a_{n}-M\right|<\epsilon$ for $n \gg 1$. Thus, $\left|\left|a_{n}\right|-|M|\right|=\left|-a_{n}+M\right|<\epsilon$ for $n \gg 1$.

Proof for (8). True. By the test for divergence, we have $\lim n^{2} a_{n}=0$. Therefore, we have $\left|n^{2} a_{n}\right| \leq 1$ for $n \gg 1$, namely $\left|a_{n}\right| \leq \frac{1}{n^{2}}$ for $n \geq N$ where N is a large constant.

Since $\sum_{N}^{\infty} \frac{1}{n^{2}}$ converges by the proof of Example 7.5A in page 104, the comparison theorem $\sum_{N}^{\infty}\left|a_{n}\right|$ converges. Hence, the tail-convergence theorem $\left|a_{n}\right|$ converges. Therefore, a_{n} is absolutely convergent.

Proof for (9). True. Since a_{n}, b_{n} are Cauchy sequences, they are convergent. Hence, $a_{n} b_{n}$ is also convergent to its limit L by the multiplication theorem. Therefore, given $\epsilon>0$ we have $\left|a_{n} b_{n}-L\right|<\epsilon / 2$ for $n \geq N$. Thus, $\left|a_{n} b_{n}-a_{m} b_{m}\right|<\epsilon$ for $n, m \geq N$.

Proof for (10). False. Let $a_{n}=1 / n$. Then, $1 / a_{n}=n$ diverges. So, it is not a Cauchy sequence, since every Cauchy sequence must converge.

Proof for (11). False. Let $f(x)=0$ for $x \neq 0$ and $f(0)=1$. Then, $\lim _{x \rightarrow 0} f(x)=0 \neq 1=f(0)$.

Proof for (12). True. Since $f(x)$ is bounded for $x \approx 0$, there exists some numbers $M, \delta>0$ such that $|f(x)| \leq M$ holds for $x \in(-\delta, \delta)$. Therefore, given $\epsilon>0$ we have

$$
|x f(x)-0 f(0)|=|x||f(x)| \leq M|x|<\epsilon,
$$

for $x \in(-\epsilon / M, \epsilon / M) \cap(-\delta, \delta)$. Namely, $x f(x)$ is continuous at 0 .

Proof for (13). False. Let $f(x)=-1$ for $x<0$ and $f(x)=1$ for $x>0$. Then, $\lim _{x \rightarrow 0^{+}} f(x)=1$ and $\lim _{x \rightarrow 0^{-}} f(x)=-1$. Assume that $f(x)$ has the limit L. Then, there exists $\delta>0$ such that $|f(x)-L|<1$ holds for $x \in$ $(-\delta, \delta) \backslash\{0\}$. So, $|1-L|=|f(\delta / 2)-L|<1$ and $|1+L|=|f(\delta / 2)-L|<1$. Thus, we have a contradiction $2 \leq|1-L|+|1+L|<2$.

Proof for (14). False. Let $f(x)=x$ for $x \in[0,1)$ and $f(1)=2$. Then, $f(x)$ is increasing. However, $|f(x)-2|=2-x \geq 1$ for $x \in[0,1)$, namely $f(x)$ is not left-continuous at 1 .

Proof for (15). True. Let $I=[0,1)$. Then, $f(1)$ is an upper bound for $f(I)$, since $f(x) \leq f(1)$ for $x \in I$. Thus, by the completeness property of sets, $f(I)$ has the supremum \bar{m}.

We now claim that \bar{m} is the left-hand limit of $f(x)$ at 1 . For every $n \in \mathbb{N}$, there exists a number $x_{n} \in I$ such that $\bar{m}-\frac{1}{n}<f\left(x_{n}\right) \leq \bar{m}$. So, given $\epsilon>0$ we choose a number $N>1 / \epsilon$. Since $f(x)$ is increasing

$$
\bar{m}-\epsilon<\bar{m}-\frac{1}{N}<f\left(x_{N}\right) \leq f(x) \leq \sup f(I)=\bar{m}
$$

holds for $x \in\left(x_{N}, 1\right) \subset I$. Thus, $|\bar{m}-f(x)|<\epsilon$ for $x \in\left(1-x_{N}, 1\right)$, namely \bar{m} is the left-hand limit.

Problem 2. Determine whether the following sequences are convergent or divergent. If convergent, find the limit and explain why it is the limit. If divergent, explain why the sequence is not convergent.
(1) $a_{n}=\frac{(-1)^{n} n}{2 n+1}$
(2) $a_{n}=\frac{n^{3}}{3^{n}}$
(3) $a_{n}=\frac{2^{n}+1}{3^{n}+n^{3}}$
$\left(4^{*}\right) a_{n}=\frac{n!}{n^{n}}$
(5) $a_{n+1}=\left(\frac{a_{n}}{2}\right)^{2}, a_{0}<4$,
(6) $a_{n+1}=\left(\frac{a_{n}}{2}\right)^{2}, a_{0}>4$.
$\left(7^{*}\right) 4 a_{n+1}=5-a_{n}^{2}, 0<a_{0}<2$,
(8) $a_{n+1}=\sqrt{2 a_{n}-1}, a_{0}>1$.

Fact needed for $\left(4^{*}\right): \lim \left(1+\frac{1}{n}\right)^{n}=e \approx 2.71828 \ldots>1$.
Proof for (1). Diverges. We have

$$
a_{2 m}=\frac{2 m}{4 m+1}=\frac{1}{2+\frac{1}{2 m}}, \quad a_{2 m-1}=-\frac{2 m-1}{4 m-1}=-\frac{1-\frac{1}{2 m}}{2-\frac{1}{2 m}}
$$

Hence, Theorem 5.1 implies $\lim a_{2 m}=\frac{1}{2}$ and $\lim a_{2 m-1}=-\frac{1}{2}$. So, if we assume a_{n} converges to L, then we have $L=\frac{1}{2}=-\frac{1}{2}$ by the subsequence theorem and the uniqueness of the limit. Therefore, a_{n} can not converge.

Proof for (2). Converges to 0. We have

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{(n+1)^{3}}{3 n^{3}}=\frac{\left(1+\frac{1}{n}\right)^{3}}{3}
$$

Hence, $\lim \frac{1}{n}=0$ and Theorem 5.1 implies $\lim \left|\frac{a_{n+1}}{a_{n}}\right|=\frac{1}{3}<1$. Therefore, the series $\sum a_{n}$ converges absolutely by the ratio test. Hence, $\lim a_{n}=0$ by the test for divergence.

Proof for (3). Converges to 0 . We have

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{2^{n+1}+1}{2^{n}+1} \cdot \frac{3^{n}+n^{3}}{3^{n+1}+(n+1)^{3}}=\frac{2+\frac{1}{2^{n}}}{1+\frac{1}{2^{n}}} \cdot \frac{1+\frac{n^{3}}{3^{n}}}{3+3 \frac{(n+1)^{3}}{3^{n+1}}} .
$$

Theorem 3.4 shows $\lim \frac{1}{2^{n}}=0$. Also, the proof for (2) shows $\lim \frac{n^{3}}{3^{n}}=0$. Therefore, Theorem 5.1 implies $\lim \left|\frac{a_{n+1}}{a_{n}}\right|=\frac{2}{3}<1$. Thus, the series $\sum a_{n}$ converges absolutely by the ratio test. Hence, $\lim a_{n}=0$ by the test for divergence.

Proof for (4). Converges to 0 . We have $a_{n+1}=\frac{(n+1)!}{(n+1)^{n+1}}=\frac{n!}{(n+1)^{n}}$. Thus,

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{n^{n}}{(n+1)^{n}}=\left(\frac{n}{n+1}\right)^{n}=\left(1+\frac{1}{n}\right)^{-n} .
$$

Therefore, the fact $\lim \left(1+\frac{1}{n}\right)^{n}=e$ and Theorem 5.1 implies $\lim \left|\frac{a_{n+1}}{a_{n}}\right|=$ $e^{-1}<1$. Thus, the series $\sum a_{n}$ converges absolutely by the ratio test. Hence, $\lim a_{n}=0$ by the test for divergence.

Proof for (5). Converges to 0 . We have $a_{1}=\left(a_{0} / 2\right)^{2}<(4 / 2)^{2}=4$ and $a_{1}>0$. Next, if $0<a_{k}<4$ holds for some integer k, then $a_{k+1}=\left(a_{k} / 2\right)^{2}<$ $(4 / 2)^{2}=4$ and $a_{k+1}>0$. Therefore, we have $0<a_{n}<4$ for all n by the mathematical induction.

Hence, $a_{n+1}=\left(a_{n} / 2\right)^{2}=a_{n} \cdot\left(a_{n} / 4\right)<a_{n}$, namely a_{n} is decreasing. Therefore, a_{n} converges by the comparison theorem.

Let $L=\lim a_{n}$. Then, $L=\lim a_{n+1}=\lim a_{n}^{2} / 4=\frac{1}{4} \lim a_{n}^{2}=\frac{1}{4}\left(\lim a_{n}\right)^{2}=$ $\frac{L^{2}}{4}$ by Theorem 5.1. Therefore, $L=0$ or 4. However, we have $a_{n}<a_{0}$ and thus $L \leq a_{0}<4$ by the limit location theorem, namely $L \neq 4$. So, 0 is the limit.

Proof for (6). Diverges. We have $a_{1}=\left(a_{0} / 2\right)^{2}>(4 / 2)^{2}=4$. Next, if $a_{k}>4$ holds for some integer k, then $a_{k+1}=\left(a_{k} / 2\right)^{2}>(4 / 2)^{2}=4$. Therefore, we have $a_{n}>4$ for all n by the mathematical induction.

Hence, $a_{n+1}=\left(a_{n} / 2\right)^{2}=a_{n} \cdot\left(a_{n} / 4\right)>a_{n}$, namely a_{n} is increasing.
We assume that a_{n} converges to L. Then, $L=\lim a_{n+1}=\lim a_{n}^{2} / 4=$ $\frac{1}{4} \lim a_{n}^{2}=\frac{1}{4}\left(\lim a_{n}\right)^{2}=\frac{L^{2}}{4}$ by Theorem 5.1. Therefore, $L=0$ or 4 . However, $a_{n}>a_{0}$ and the limit location theorem shows $L \geq a_{0}>4$, namely $L \neq 0,4$. Therefore, a_{n} diverges.

Proof for (7). Converges to 1 . Let e_{n} denote $a_{n}-1$. Then,

$$
4 e_{n+1}=4 a_{n+1}-4=1-a_{n}^{2}=\left(1-a_{n}\right)\left(1+a_{n}\right)=-e_{n}\left(e_{n}+2\right)
$$

Since $\left|e_{0}\right|<1$, we have $\left|e_{1}\right|=\frac{1}{4}\left|e_{0}\right|\left|e_{0}+2\right| \leq \frac{1}{4}\left|e_{0}\right|\left(\left|e_{0}\right|+2\right)<\frac{3}{4}$. In addition, if $\left|e_{k}\right|<\left(\frac{3}{4}\right)^{k}$ for some k, then

$$
\left|e_{k+1}\right|=\frac{1}{4}\left|e_{k}\right|\left|e_{k}+2\right| \leq \frac{\left|e_{k}\right|+2}{4}\left|e_{k}\right|<\frac{3}{4}\left(\frac{3}{4}\right)^{k}=\left(\frac{3}{4}\right)^{k+1}
$$

Thus, $-\left(\frac{3}{4}\right)^{n}<e_{n}<\left(\frac{3}{4}\right)^{n}$ holds for all n by mathematical induction. By Theorem 3.4, $\lim \left(\frac{3}{4}\right)^{n}=0$. Hence, by the squeeze theorem, $\lim e_{n}=0$, namely $\lim a_{n}=1$.

Proof for (8). Converges to 1 . We have $a_{1}=\sqrt{2 a_{0}-1}>\sqrt{2-1}=1$. Moreover, if $a_{k}>1$ for some k, then $a_{k+l}=\sqrt{2 a_{k}-1}>\sqrt{2-1}=1$. Therefore, by mathematical induction, $a_{n}>1$ holds for all n.

Next, we observe

$$
\begin{aligned}
& a_{n+1}=\sqrt{2 a_{n}-1} \leq a_{n} \\
\Longleftrightarrow & 2 a_{n}-1 \leq a_{n}^{2} \quad\left(\text { because } a_{n}, a_{n+1}>0\right) \\
\Longleftrightarrow & 0 \leq a_{n}^{2}-2 a_{n}+1=\left(a_{n}-1\right)^{2} .
\end{aligned}
$$

Therefore, a_{n} is decreasing. Hence, by the completeness property, a_{n} converges.

Let L be the limit of a_{n}. Then, $a_{n+1}^{2}=2 a_{n}-1$ and Theorem 5.1 shows

$$
2 L-1=\lim 2 a_{n}-1=\lim a_{n+1}^{2}=\left(\lim a_{n+1}\right)^{2}=L^{2}
$$

Thus, $(L-1)^{2}=L^{2}-2 L+1=0$, namely $L=1$.

Problem 3. Let $a_{n+1}=\frac{2}{1+a_{n}}$ and $a_{0}>1$.
(1) Show that the subsequence of even terms $a_{2 n}$ is decreasing and bounded below, and the subsequence of odd terms $a_{2 n-1}$ is increasing and bounded above.
(2) Show the convergence of a_{n}, and fine the limit.

Proof for (1). We have

$$
a_{n+2}=\frac{2}{1+a_{n+1}}=\frac{2}{1+\frac{2}{1+a_{n}}}=\frac{2\left(1+a_{n}\right)}{\left(1+a_{n}\right)+2}=\frac{2 a_{n}+2}{a_{n}+3} .
$$

Regarding $a_{2 n}$, the condition $a_{0}>1$ yields

$$
a_{2}=\frac{2 a_{0}+2}{a_{0}+3}>\frac{a_{0}+3}{a_{0}+3}=1 .
$$

In addition, if $a_{2 k}>1$ for some k, then $a_{2 k+2}=\frac{2 a_{2 k}+2}{a_{2 k}+3}>\frac{a_{2 k}+3}{a_{2 k}+3}=1$. So, by mathematical induction, $a_{2 n}>1$ holds for all n.

$$
\begin{aligned}
a_{2 n+2}=\frac{2 a_{2 n}+2}{a_{2 n}+3} \leq a_{2 n} & \Longleftrightarrow 2 a_{2 n}+2 \leq a_{2 n}^{2}+3 a_{2 n} \\
& \Longleftrightarrow 0 \leq a_{2 n}^{2}+a_{2 n}-2 .
\end{aligned}
$$

Thus, $a_{2 n}>1$ implies $a_{2 n+2} \leq a_{2 n}$. So, $a_{2 n}$ is decreasing and bounded below by 1 .

Regarding $a_{2 n+1}$, the condition $a_{0}>1$ yields $a_{1}=\frac{2}{1+a_{0}}<\frac{2}{1+1}=1$. So,

$$
a_{3}=\frac{2 a_{1}+2}{a_{1}+3}<\frac{a_{1}+3}{a_{1}+3}=1 .
$$

In addition, if $a_{2 k+1}>1$ for some k, then $a_{2 k+3}=\frac{2 a_{2 k+1}+2}{a_{2 k+1}+3}<\frac{a_{2 k+1}+3}{a_{2 k+1}+3}=1$. So, by mathematical induction, $a_{2 n+1}<1$ holds for all n.

$$
\begin{aligned}
a_{2 n+3}=\frac{2 a_{2 n+1}+2}{a_{2 n+1}+3} \geq a_{2 n+1} & \Longleftrightarrow 2 a_{2 n+1}+2 \geq a_{2 n+1}^{2}+3 a_{2 n+1} \\
& \Longleftrightarrow 0 \geq a_{2 n+1}^{2}+a_{2 n+1}-2 .
\end{aligned}
$$

Thus, $a_{2 n+1}<1$ implies $a_{2 n+3} \geq a_{2 n+1}$. So, $a_{2 n+1}$ is increasing and bounded above.

Proof for (2). By the result of (1) and the completeness property, $\lim a_{2 n}=$ L and $\lim a_{2 n+1}=M$ exist. Moreover, the limit location theorem shows $L \geq 1$. Theorem 5.1 and $2=a_{n+1}\left(1+a_{n}\right)$ lead to

$$
2=\lim a_{2 n+1}\left(1+a_{2 n}\right)=\lim a_{2 n+1}+\left(\lim a_{2 n+1}\right)\left(\lim a_{2 n}\right)=M+L M,
$$

and

$$
2=\lim a_{2 n}\left(1+a_{2 n-1}\right)=\lim a_{2 n}+\left(\lim a_{2 n}\right)\left(\lim a_{2 n-1}\right)=L+L M .
$$

So, $M=L=2-M L$, namely $\lim a_{n}=L$. Hence, $0=L^{2}+L-2=$ $(L+2)(L-1)$, namely $L=1$ or -2 . Since $L \geq 1$, we have $\lim a_{n}=1$.

Problem 4. Let $a_{n+1}=\frac{1}{2+a_{n}}$ and $a_{0}>0$.
(1) Show that $\left\{a_{n}\right\}$ is a Cauchy sequence.
(2) Find the limit of $\left\{a_{n}\right\}$ and explain why it is the limit.

Proof for (1). $a_{0}>0$ gives $a_{1}=\frac{2}{1+a_{0}}>0$. If $a_{k}>0$ for some k, then $a_{k+1}=\frac{2}{1+a_{k}}>0$. By mathematical induction, $a_{n}>0$ for all n. Also,

$$
\left|a_{2}-a_{1}\right|=\left|\frac{1}{2+a_{1}}-\frac{1}{2+a_{0}}\right|=\frac{\left|a_{1}-a_{0}\right|}{\left(2+a_{0}\right)\left(2+a_{1}\right)}<\frac{1}{4}\left|a_{1}-a_{0}\right|
$$

If $\left|a_{k+1}-a_{k}\right|<\left(\frac{1}{4}\right)^{k}\left|a_{1}-a_{0}\right|$ for some k,

$$
\begin{aligned}
\left|a_{k+2}-a_{k+1}\right| & =\left|\frac{1}{2+a_{k+1}}-\frac{1}{2+a_{k}}\right|=\frac{\left|a_{k+1}-a_{k}\right|}{\left(2+a_{k}\right)\left(2+a_{k+1}\right)} \\
& <\frac{1}{4}\left|a_{k+1}-a_{k}\right|<\left(\frac{1}{4}\right)^{k+1}\left|a_{1}-a_{0}\right|
\end{aligned}
$$

By mathematical induction, $\left|a_{n+1}-a_{n}\right|<\left(\frac{1}{4}\right)^{n}\left|a_{1}-a_{0}\right|$ for all n. Hence, for $m>n$, we have

$$
\begin{aligned}
\left|a_{m}-a_{n}\right| & \leq \sum_{k=n}^{m-1}\left|a_{k+1}-a_{k}\right| \leq \sum_{k=n}^{m-1}\left(\frac{1}{4}\right)^{k}\left|a_{1}-a_{0}\right| \leq \frac{\left|a_{1}-a_{0}\right|}{4^{n}} \sum_{k=0}^{m-n-1}\left(\frac{1}{4}\right)^{k} \\
& =\frac{\left|a_{1}-a_{0}\right|}{4^{n}} \frac{1-\frac{1}{4^{m-n-1}}}{1-\frac{1}{4}} \leq \frac{\left|a_{1}-a_{0}\right|}{3}\left(\frac{1}{4}\right)^{n-1}
\end{aligned}
$$

By Theorem 3.4, given $\epsilon>0,\left|a_{m}-a_{n}\right|<\epsilon$ holds for $n, m \gg 1$.

Proof for (2). Since a_{n} is a Cauchy sequence, a_{n} converges to its limit L.

$$
1=\lim a_{n+1}\left(2+a_{n}\right)=2 \lim a_{n+1}+\left(\lim a_{n+1}\right)\left(\lim a_{n}\right)=2 L+L^{2}
$$

namely $0=L^{2}+2 L-1$. Hence, $L=-1 \pm \sqrt{2}$.
On the other hand, $a_{n}>0$ implies $L \geq 0$. Thus, $L=-1+\sqrt{2}$.

Problem 5. Let S, T be non-empty sets bounded above. Suppose $s, t>0$ holds for all $s \in S$ and $t \in T$. Then, we have $(\sup S)(\sup T)=\sup S T$, where $S T=\{s t: s \in S, t \in T\}$.

Proof. By completeness property for sets, $\sup S$ and $\sup T$ exist. Since $s, t>$ $0,0<s \leq \sup S$ and $0<t \leq \sup T$ yields st $\leq(\sup S)(\sup T)$, namely $(\sup S)(\sup T)$ is an upper bound for $S T$. Therefore,

$$
\sup S T \leq(\sup S)(\sup T)
$$

For a fixed $s \in S, s t \leq \sup S T$ shows that $t \leq(\sup S T) / s$ holds for all $t \in T$. Therefore, $\sup T \leq(\sup S T) / s$, namely $s \sup T \leq \sup S T$ holds for
all $s \in S$. Since $\sup T \geq t>0$, we have $s \leq(\sup S T) /(\sup T)$, namely $\sup S \leq(\sup S T) /(\sup T)$. Hence,

$$
\sup S T \geq(\sup S)(\sup T)
$$

In conclusion, $\sup S T=(\sup S)(\sup T)$.

Problem 6. Determine whether the following series are convergent or divergent, and explain why they are convergent or divergent.
(1) $\sum_{n=1}^{\infty} \frac{n}{2 n+1}$
(2) $\sum_{n=1}^{\infty} \frac{n^{3}}{3^{n}}$
(3) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n+1}}$
(4) $\sum_{n=1}^{\infty} \frac{2 n}{n^{2}+1}$.

Proof for (1). Diverges. $\frac{n}{2 n+1}=\frac{1}{2+\frac{1}{n}}, \lim \frac{1}{n}=0$, and Theorem 5.1 give

$$
\lim \frac{n}{2 n+1}=\lim \frac{1}{2+\frac{1}{n}}=\frac{1}{2+0}=\frac{1}{2} \neq 0
$$

By the test for divergence, it diverges.

Proof for (2). Converges. We have

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{1}{3} \frac{(n+1)^{3}}{n^{3}}=\frac{1}{3} \lim \left(1+\frac{1}{n}\right)^{3} .
$$

So, $\lim \frac{1}{n}=0$ and Theorem 5.1 lead to $\lim \left|\frac{a_{n+1}}{a_{n}}\right|=\frac{1}{3}<1$. Hence, by the ratio test, it converges.

Proof for (3). Converges. Since $\frac{1}{\sqrt{n+1}}$ is decreasing and converges to zero, the Cauchy's test guarantees the its alternating form is convergent.

Proof for (4). Diverges. The proof of Example 7.5A in the textbook shows $\sum \frac{1}{n}$ tends to infinity, namely $\sum \frac{2}{n}$ tends infinity. Moreover, we have

$$
\lim \left|\frac{\frac{2}{n}}{\frac{2 n}{n^{2}+1}}\right|=\lim \frac{n^{2}+1}{n^{2}}=\lim 1+\frac{1}{n^{2}}=1
$$

Therefore, by the asymptotic comparison test, $\sum \frac{2 n}{n^{2}+1}$ also diverges.

Problem 7. Find the radius of convergence of the following power series, and explain why.
(1) $\sum_{n=0}^{\infty} \frac{x^{2 n}}{3^{n}}$
(2) $\sum_{n=1}^{\infty} \frac{x^{n}}{2^{n}(n+1)}$.

Proof for (1). For a fixed x, we have

$$
\lim \sqrt[n]{\left|x^{2 n} 3^{-n}\right|}=\lim x^{2} / 3=x^{2} / 3
$$

Hence, by the root test, the power series converges if $x^{2} / 3<1$ and diverges if $x^{2} / 3>1$, namely converges if $|x|<\sqrt{3}$ and diverges if $|x|>\sqrt{3}$. Hence, $\sqrt{3}$ is the radius of convergence.

Proof for (2). If $x=0$, it converges to zero. Given a fixed $x \neq 0$, we define $a_{n}=\frac{x^{n}}{2^{n}(n+1)}$. Then,

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{|x|^{n+1}}{|x|^{n}} \frac{2^{n}}{2^{n+1}} \frac{n+1}{n+2}=\frac{|x|}{2} \frac{1+\frac{1}{n}}{1+\frac{2}{n}} .
$$

Combining with $\lim \frac{1}{n}=0$ and Theorem 5.1 yields $\lim \left|\frac{a_{n+1}}{a_{n}}\right|=\frac{|x|}{2}$. Hence, by the ratio test, the power series converges if $|x| / 2<1$ and diverges if $|x| / 2>1$, namely converges if $|x|<2$ and diverges if $|x|>2$. Hence, 2 is the radius of convergence.

Problem 8 (Very challenging). Let $f(x)$ be a continuous function defined on \mathbb{R}. Suppose that $f\left(m 2^{-n}\right) \geq 0$ holds for all integer $m \in \mathbb{Z}$ and natural number $n \in \mathbb{N}$. Show that $f(x) \geq 0$ holds for all $x \in \mathbb{R}$.

Proof. Let \mathbb{Y} denote the set of $m 2^{-n}$. Given a point x, we will construct a sequence $y_{n} \in \mathbb{Y}$ converging to x. First of all, we let y_{0}, y_{1} be the integers $m, m+1$ such that $m \leq x<m+1$, and let $I_{1}=\left[y_{0}, y_{1}\right]=\left[a_{1}, b_{1}\right]$. Next, we set $y_{2}=\frac{a_{1}+b_{1}}{2}=\frac{2 m-1}{2} \in \mathbb{Y}$. Then, x must be contained in at least one of
 and then $\left|b_{2}-a_{2}\right|=\frac{1}{2}$.

We assume that we can iterate the halving process until obtaining $I_{k}=$ $\left[a_{k}, b_{k}\right]$ with $a_{k}, b_{k} \in \mathbb{Y}$ and $\left|b_{k}-a_{k}\right|=\frac{1}{2^{k-1}}$. Then, we have $a_{k}=p_{k} 2^{-q_{k}}$ and $b_{k}=r_{k} 2^{-s_{k}}$ for some integers p, r_{k} and natural numbers q_{k}, s_{k}. Hence, we can set

$$
y_{k+1}=\frac{a_{k}+b_{k}}{2}=\frac{p_{k} 2^{s_{k}}+r_{k} 2^{q_{k}}}{2^{q_{k}+s_{k}+1}} \in \mathbb{Y}
$$

Then, x must be contained in at least one of $\left[a_{k}, y_{k+1}\right]$ and $\left[y_{k+1}, b_{k}\right]$. So, we let $I_{k+1}=\left[a_{k}, b_{k}\right]$ be the half interval containing x, and then $\left|b_{k+1}-a_{k+1}\right|=$ $\frac{1}{2^{k}}$ and $a_{k+1}, b_{k+1} \in \mathbb{Y}$.

Hence, by mathematical induction, there exist a nested sequence of closed intervals $I_{n}=\left[a_{n}, b_{n}\right]$ with $a_{n}, b_{n} \in \mathbb{Y}$ and $\left|b_{n}-a_{n}\right|=\frac{1}{2^{n-1}}$. Since Theorem 3.4 implies $\lim \frac{1}{2^{n-1}}=0$, the nested interval theorem shows that there exists $L \in I_{n}$ and $\lim a_{n}=\lim b_{n}=L$. Moreover, $a_{n} \leq y_{n+1} \leq b_{n}$ and the squeeze theorem give $\lim y_{n}=L$. In addition, we have $x=L$, because $x, L \in I_{n}$
shows $|x-L|<\frac{1}{2^{n-1}}$ for all n. In conclusion, there exists $y_{n} \in \mathbb{Y}$ such that $\lim y_{n}=x$.

Since $f(x)$ is continuous, Theorem 11.5A shows $\lim f\left(y_{n}\right)=f(x)$. Hence, $f\left(y_{n}\right) \geq 0$ and the limit location theorem for sequences, we have the desired result $f(x) \geq 0$.

Problem 9. Let $f(x)$ be a bounded function defined on \mathbb{R}, and let $F(x)=$ $\int_{0}^{x} f(t) d t$. Show that $F(x)$ is continuous on \mathbb{R}.

Proof. Since $f(x)$ is bounded, $|f(x)|<M$ for some $M>0$. Hence,

$$
|F(x)-F(y)|=\left|\int_{0}^{x} f(t) d t-\int_{0}^{y} f(t) d t\right|=\left|\int_{y}^{x} f(t) d t\right|
$$

We set $f_{+}(t)=\max \{f(t), 0\} \geq 0$ and $f_{-}(t)=\max \{-f(t), 0\} \geq 0$. Then, $f=f_{+}-f_{-}$and $|f|=f_{+}+f_{-}$. Without loss of generality, we assume $y \geq x$. Then, the triangle inequality shows

$$
\begin{aligned}
\left|\int_{y}^{x} f(t) d t\right| & =\left|\int_{y}^{x} f_{+}(t) d t-\int_{y}^{x} f_{-}(t) d t\right| \leq\left|\int_{y}^{x} f_{+}(t) d t\right|+\left|\int_{y}^{x} f_{-}(t) d t\right| \\
& =\int_{y}^{x} f_{+}(t)+f_{-}(t) d t=\int_{y}^{x}|f(t)| d t<\int_{y}^{x} M d t=M|y-x|
\end{aligned}
$$

Therefore, given $\epsilon>0$, we have $\left|F\left(x_{0}\right)-F(x)\right|<M\left|x_{0}-x\right|<\epsilon$ for $x \in$ $\left(x_{0}-\epsilon / M, x_{0}+\epsilon / M\right)$. Namely, $F(x)$ is continuous at any point $x_{0} \in \mathbb{R}$.

Problem 10. Suppose that $f(x)$ is a continuous function defined on \mathbb{R}, and $f(x) \geq 0$ holds for all $x \in \mathbb{R}$. Show that $g(x)=\sqrt{f(x)}$ is continuous on \mathbb{R}.

Proof. If $f\left(x_{0}\right)=0$ at some point x_{0}. Since $f(x)$ is continuous, given $\epsilon>0$, $|f(x)|<\epsilon^{2}$ holds for $x \approx x_{0}$, namely $|g(x)|<\epsilon$ for $x \approx x_{0}$.

If $f\left(x_{0}\right)>0$ at some point x_{0}. Then,

$$
\left|g\left(x_{0}\right)-g(x)\right|=\left|\frac{f\left(x_{0}\right)-f(x)}{\sqrt{f\left(x_{0}\right)}+\sqrt{f(x)}}\right| \leq \frac{\left|f\left(x_{0}\right)-f(x)\right|}{\sqrt{f\left(x_{0}\right)}} .
$$

Since $f(x)$ is continuous, given $\epsilon>0,\left|g\left(x_{0}\right)-g(x)\right|<\epsilon \sqrt{f\left(x_{0}\right)}$ holds for $x \approx x_{0}$, namely $\left|g\left(x_{0}\right)-g(x)\right|<\epsilon$ for $x \approx x_{0}$.

Problem 11. Suppose that a continuous function $f(x)$ is defined on $[a, b]$ with $a \neq b$, and $f(x)$ is strictly increasing on (a, b). Show that $f(x)$ is strictly increasing on $[a, b]$.

Proof. Assume that $f(b) \leq f(c)$ for some $c \in(a, b)$. Since f is strictly increasing on (a, b), we have $f(b) \leq f(c)<f(m)$ where $m=\frac{b+c}{2}$. On the other hand, $f(m)<f(x)$ for all $x \in(m, b)$. Therefore, the limit location theorem yields $f(b)=\lim _{x \rightarrow b^{-1}} f(x) \geq f(m)$, which contradicts to $f(m)>f(c) \geq f(b)$. Hence, $f(b)>f(c)$ for all (a, b), namely $f(x)$ is strictly increasing on $(a, b]$.

In the same manner, we can show that $f(x)$ is strictly increasing on $[a, b]$ by assuming that $f(a) \geq f(c)$ for some $c \in(a, b]$.

Problem 12. Suppose that $f(x), g(x)$ are continuous functions defined on \mathbb{R}. Show that the function $h(x)=\max \{f(x), g(x)\}$ is continuous on \mathbb{R}.

Proof. Given a point x_{0}, we assume $f\left(x_{0}\right) \geq g\left(x_{0}\right)$ without loss of generality, namely $h\left(x_{0}\right)=f\left(x_{0}\right)$.

If $f\left(x_{0}\right)=g\left(x_{0}\right)$, then given $\epsilon>0$ we have $\left|f(x)-h\left(x_{0}\right)\right|<\epsilon, \mid g(x)-$ $h\left(x_{0}\right) \mid<\epsilon$ for $x \approx x_{0}$. Then, $\left|h(x)-h\left(x_{0}\right)\right|<\epsilon$ for $x \approx x_{0}$, because $h(x)$ is one of $f(x)$ and $g(x)$.

If $\sigma=f\left(x_{0}\right)-g\left(x_{0}\right)>0$, then we have $\left|f(x)-f\left(x_{0}\right)\right|<\sigma / 2, \mid g(x)-$ $h\left(x_{0}\right) \mid<\sigma / 2$ for $x \approx x_{0}$. Thus,

$$
\begin{aligned}
f(x)-g(x) & =\left(f\left(x_{0}\right)-g\left(x_{0}\right)\right)+\left(f(x)-f\left(x_{0}\right)\right)+\left(g\left(x_{0}\right)-g(x)\right) \\
& \geq \sigma-\left|f(x)-f\left(x_{0}\right)\right|-\left|g(x)-g\left(x_{0}\right)\right|>0,
\end{aligned}
$$

holds for $x \approx x_{0}$, namely $f(x)=h(x)$ for $x \approx x_{0}$. Hence, $h(x)$ is continuous for $x \approx x_{0}$.

Sample Exam

Solutions for problem 1-5 are given in the proofs above. Sure, the exam problems will be a bit different form the practice problems.

For problems 6 and 7, let me give you answer keys and hints. You can try to prove them during the spring break. The bonus problems in the exam will have totally different style from the practice problems and sample exam problems.
6. Possible Answers: $x^{2} \sin (1 / x), \int_{x}^{1} \sin (1 / t) d t$.
7. Hint: consider the $2^{\text {nd }}$ order derivative of $1+x+\cdots+x^{n}$ and plug $x=\frac{1}{2}$.

