Problem 1. Determine whether the following statements are true or false.

If true then prove it, and if false then provide a counterexample.

1) Suppose a, > M for n>> 1 and lima, = L. Then, L > M.

2) Suppose lima2 = L. Then, lima, = v/L.

3) Suppose {anby} and {an} converge. Then, by, also converges.

4) Suppose {an} and {b,} with b, # 0 are bounded. Then, ay/by is
also bounded.

(5) Suppose a non-empty set S has its supremum. Then, the set S? =
{s? : s € S} has its supremum and (sup S)? = sup S2.

(6) A sequence of open intervals I, = (an,by) satisfies Ini1 C I, and
lim [b,, — an| = 0. Then, there exists a number L such that lim a,, =
limb, =L and L € I,.

(7) Iflimay, = M, then lim|a,| = |M]|.

(8*) A sequence {nay} converges. Then, the series Y. a, converges.

(9) Let a,, and b, be Cauchy sequences. Then, apby, is also a Cauchy
sequence.

(10) Let a,, > 0 be a Cauchy sequence. Then, i is also a Cauchy se-

quence.
(11) Let f(x) be defined for x =~ x¢ and l'i)m f(x) = L. Then, L = f(x).
T—x0

(12) Let f(x) be a bounded function defined for x ~ 0. Then, xf(x) is
continuous at 0.

(13) Suppose that f(x) has both of the right- and left- hand limits. Then,
f(x) has the limit at .

(14) Let f(x) be an increasing function defined on an interval [0,1]. Then,
f(x) is left-continuous at 1.

(15*) Let f(z) be an increasing function defined on an interval [0,1]. Then,
f(x) has the left-hand limit at 1.

Proof for (1). False. Let a, = % and M = 0. Then, a, > M and L =
lima, =0. Thus, M = L, not L > M. O

Proof for (2). False. Let a, = (—1)". Then, a2 = 1 and thus lima? = 1.
However, ag,, = 1 and agyy4+1 = —1. Therefore, there are subsequences of a,,
converging to different limits. Thus, a,, can not converge by the subsequence
theorem and the uniqueness of the limit. ([l

Proof for (3). False. Let a, = 0 and b,, = n. Then, a,b, = 0 and a,, = 0
are constant sequence and therefore converge. However, b,, diverges. ([l

Proof for (4). False. Let a, = 1 and b, = % Then, 0 < ay,b, < 1.
However, a, /b, = n is unbounded. O
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Proof for (5). False. Let S = (—00,0]. Then, supS = 0. However, S? =
(—00, +00) and thus sup S? does not exist. O

Proof for (6). False. Let I, = (0,2). Then, Iy11 C Iy, lim|b, — a,| =
lim% =0, and lima,, = limb,, = 0. However, 0 & I,,. O

Proof for (7). True. If M = 0, then given € > 0 we have |ay| = |a, — 0] < €
for n>> 1. Thus, ||as| — [0]| = |an| < € for n>> 1.

If M > 0, then given ¢ > 0 we have a,, > 0, |a, — M| < € for n > 1.
Thus, |lan| — [M|| = |an — M| < € for n>> 1.

If M < 0, then given ¢ > 0 we have a,, < 0, |a, — M| < € for n > 1.
Thus, |lan| — [M|| = | — an + M| < € for n.>> 1. O

Proof for (8). True. By the test for divergence, we have limn2a, = 0.
Therefore, we have [n?a,| < 1 for n >> 1, namely |a,| < # for n > N where
N is a large constant.

Since Y% # converges by the proof of Example 7.5A in page 104, the
comparison theorem Y 3 |a,| converges. Hence, the tail-convergence theo-
rem |a,| converges. Therefore, a,, is absolutely convergent. ([

Proof for (9). True. Since a,,b, are Cauchy sequences, they are conver-
gent. Hence, a,b, is also convergent to its limit L by the multiplication
theorem. Therefore, given ¢ > 0 we have |apb, — L| < €¢/2 for n > N. Thus,
|anbn, — apmbp,| < € for n,m > N. O

Proof for (10). False. Let a, = 1/n. Then, 1/a, = n diverges. So, it is not
a Cauchy sequence, since every Cauchy sequence must converge. ([

Proof for (11). False. Let f(x) = 0 for x # 0 and f(0) = 1. Then,
lim f(x) = 0% 1= f(0) O

Proof for (12). True. Since f(x) is bounded for z ~ 0, there exists some
numbers M,d > 0 such that |f(z)| < M holds for x € (—4,6). Therefore,
given € > 0 we have

[zf(x) = 0f(0)] = [z[|f ()] < Mlz] <,
for x € (—e/M,e/M) N (—=6,6). Namely, zf(z) is continuous at 0. O
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Proof for (13). False. Let f(z) = —1 for x < 0 and f(z) = 1 for z > 0.
Then, 111%1+ f(z) = 1 and h]%l f(z) = —1. Assume that f(z) has the
r— r—U—

limit L. Then, there exists 6 > 0 such that |f(z) — L| < 1 holds for = €
(=0,0)\{0}. So, 1 —L| =[f(6/2)—L| <land 1+ L|=|f(6/2)— L| < 1.
Thus, we have a contradiction 2 < |1 — L| + |1+ L| < 2. O

Proof for (14). False. Let f(z) = x for z € [0,1) and f(1) = 2. Then, f(x)
is increasing. However, |f(z) —2| =2 — 2 > 1 for z € [0,1), namely f(x) is
not left-continuous at 1. g

Proof for (15). True. Let I = [0,1). Then, f(1) is an upper bound for
f(I), since f(z) < f(1) for x € I. Thus, by the completeness property of
sets, f(I) has the supremum m.

We now claim that m is the left-hand limit of f(z) at 1. For every n € N,
there exists a number z,, € I such that m — % < f(zy) < m. So, given € > 0
we choose a number N > 1/e. Since f(z) is increasing

M- e<m— - < flan) < f(x) < sup f(1) =,

holds for x € (zn,1) C I. Thus, |m — f(z)| < € for z € (1 — zn, 1), namely
m is the left-hand limit.
U

Problem 2. Determine whether the following sequences are convergent or
divergent. If convergent, find the limit and explain why it is the limit. If
divergent, explain why the sequence is not convergent.

(—1)™n n3 2" +1 . n!
W= @a=g Ga=gs Wa=ig
An 2 QAn N2
(5)an+1 = (771) , ag < 4, (6)an+1 = (771) , ag > 4.

(7*)4an+1 =5- CLEL, 0<ag <2, (8)an+1 =+v2a, —1, ap > 1.
Fact needed for (4*) : lim(1 + )" = e ~ 2.71828.... > 1.

Proof for (1). Diverges. We have
2m 1 2m -1 11— 5=

2m

a2m = = 1 a2m—1 = — = - 1 -
dm+1 2+ 5~ 4dm —1 2— 5=
Hence, Theorem 5.1 implies lim ag,, = % and limasgy,_1 = —%. So, if we
assume a, converges to L, then we have L = % = —% by the subsequence

theorem and the uniqueness of the limit. Therefore, a,, can not converge. [
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Proof for (2). Converges to 0. We have

’an+1| (n+1)  (1+42)°

an 3n3 3
Hence, lim 1 = 0 and Theorem 5.1 implies lim |GZ—:1| = 1 < 1. Therefore,
the series > a, converges absolutely by the ratio test. Hence, lim a,, = 0 by
the test for divergence. O

Proof for (3). Converges to 0. We have

iy 2L g _2+%  1+%
an - 2741 34 (n4+1)3 1454 3+3<§:+133'

Theorem 3.4 shows lim 2% = 0. Also, the proof for (2) shows lim g—z = 0.

Therefore, Theorem 5.1 implies lim |*2| = 2 < 1. Thus, the series Y ay
converges absolutely by the ratio test. Hence, lima, = 0 by the test for
divergence. O
Proof for (/). Converges to 0. We have a, 11 = (n(ﬁ)%}; = (nfl)n' Thus,

a n" n n 1\—™m
=] = = (1) =0+y)
Gnp (n + 1)n n+1 n
Therefore, the fact lim(1 + 1) = e and Theorem 5.1 implies lim | *ot] =

e~! < 1. Thus, the series Y a, converges absolutely by the ratio test.
Hence, lim a,, = 0 by the test for divergence. O

Proof for (5). Converges to 0. We have a; = (ap/2)? < (4/2)? = 4 and
a1 > 0. Next, if 0 < aj < 4 holds for some integer k, then a1 = (ax/2)? <
(4/2)? = 4 and aj,1 > 0. Therefore, we have 0 < a, < 4 for all n by the
mathematical induction.

Hence, ani1 = (an/2)? = ay - (an,/4) < ap, namely a, is decreasing.
Therefore, a, converges by the comparison theorem.

Let L = lima,. Then, L = lima,41 = lima?/4 = 1lima2 = 1(lima,)? =
LTQ by Theorem 5.1. Therefore, L = 0 or 4. However, we have a,, < ag and
thus L < ag < 4 by the limit location theorem, namely L # 4. So, 0 is the
limit. (|
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Proof for (6). Diverges. We have a; = (ao/2)? > (4/2)? = 4. Next,
if a;, > 4 holds for some integer k, then apy1 = (ap/2)? > (4/2)? = 4.
Therefore, we have a,, > 4 for all n by the mathematical induction.

Hence, ani1 = (an/2)? = an, - (an/4) > a,, namely a,, is increasing.

We assume that a, converges to L. Then, L = lima,+; = lim a%/ll =
$lima? = Y(lima,)? = %2 by Theorem 5.1. Therefore, L = 0 or 4. How-
ever, a, > ag and the limit location theorem shows L > ag > 4, namely
L # 0,4. Therefore, a,, diverges. O

Proof for (7). Converges to 1. Let e, denote a,, — 1. Then,
depi1 =4dap —4=1-— ai =1 —an)(1+a,) = —enlen + 2).

Since |eg| < 1, we have |e1]| = |eo||eo+2| < Tleo|(Jeo] +2) < 3. In addition,
if leg| < (2)* for some k, then

1 lex| + 2 3/3\k  /3\kt1
=1 2ls = 1) =0G)
lekr1] 4\€k!|€k+ | < 1 \6k\<4 1 1

Thus, —(3)" < e, < (2)" holds for all n by mathematical induction. By

Theorem 3.4, lim(%)" = 0. Hence, by the squeeze theorem, lime, = 0,
namely lima, = 1. O

Proof for (8). Converges to 1. We have a1 = 2a9—1 > /2—-1 =
Moreover, if ap > 1 for some k, then ary; = 2ap—1 > V/2—-1 =
Therefore, by mathematical induction, a, > 1 holds for all n.

Next, we observe

ant1 = V2a, —1<ay
<— 2a, — 1< a,% (because ay,, ant1 > 0)
— 0<a?—2a,+1=(a, —1)%

Therefore, a, is decreasing. Hence, by the completeness property, a, con-
verges.
Let L be the limit of a,. Then, a2 41 = 2ap — 1 and Theorem 5.1 shows

2L — 1 =lim2a, — 1 =limaZ, | = (limay41)* = L*.

Thus, (L —1)? = L? —2L +1 = 0, namely L = 1. O

Problem 3. Let an+1 = % and ag > 1.

+an
(1) Show that the subsequence of even terms asy, is decreasing and bounded
below, and the subsequence of odd terms asn,—1 is increasing and
bounded above.
(2) Show the convergence of a,, and fine the limit.
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Proof for (1). We have
2 2 2(1+an,)  2ap+2

Ttann 1+ 2 (I+an)+2  an+3

an+2 =

Regarding a9y, the condition ag > 1 yields
2a0 + 2 ap+ 3
a2 = =
ap+ 3 ap+ 3
In addition, if as > 1 for some k, then agj o = 232tE2 > 9243 _ 1 g4 hy

) . ; ask+3 azk+3
mathematical induction, a9, > 1 holds for all n.

2a9y, + 2 9
agn +3 = a2n agp +2 < Aoy, + dazn

1.

aoan+2 =

— 0<ad, +as —2

Thus, as, > 1 implies agnt2 < agn. S0, agy, is decreasing and bounded below
by 1.

Regarding agy41, the condition ag > 1 yields a; = ﬁ < 1% =1. So,
B 2a1 + 2 a1+ 3 1

aa = =
3 ar+ 3 ar+ 3
In addition, if a > 1 for some k, then a = Z2aoki142 - dokni¥3
b) 2]€+1 b) 2k'+3 a2k+l+3 02k+1+3 .
So, by mathematical induction, as,+1 < 1 holds for all n.
2a2p+1 + 2

2
a2n+3 = > Qont1 < 2a2p41 + 2 2 ag, 41 + 3a2n41

aop+1 + 3
2

Thus, agp+1 < 1implies agpt+3 > agpt1. S0, a2,41 is increasing and bounded
above.
O

Proof for (2). By the result of (1) and the completeness property, lim ag, =
L and limag,+1 = M exist. Moreover, the limit location theorem shows
L > 1. Theorem 5.1 and 2 = ay+1(1 + a,) lead to
2 =limagp+1(1 + az,) = limagp41 + (limagyy1)(limag,) = M + LM,

and

2 = limag, (1 + agn—1) = limag, + (lim agy,)(limag,—1) = L + LM.
So, M = L = 2 — ML, namely lima, = L. Hence, 0 = L> + L —2 =
(L+2)(L —1), namely L =1 or —2. Since L > 1, we have lima,, = 1.

[l

Problem 4. Let apy1 = ﬁ

(1) Show that {an} is a Cauchy sequence.

and ag > 0.



(2) Find the limit of {a,} and explain why it is the limit.

Proof for (1). ap > 0 gives a3 = ﬁ > 0. If ap > 0 for some k, then
apy1 = ﬁ > 0. By mathematical induction, a, > 0 for all n. Also,

| | ‘ 1 1 ‘ ]al —ao‘
as — a1l = — =
T e 2440l 2+a0)2+ar)

a ap|-
| 1 0

If lag+1 — ax| < (3)¥|ar — ag| for some &,

’ L1 ’: |ag+1 — agl
24 a1 24arl (24 ak)(2 + ag+1)

1\ k+1
) |CL1 —aof-
1
1

)"|a1 — ag| for all n. Hence, for

\ak+2 - ak+1\ =

1
< = — <
4|ak+1 ag| (

By mathematical induction, |an1+1 — ap| <
m > n, we have

m—1 m—1 1\ k ‘Gl _a0’ m—n—1 N
|am—an|§ Z|akz+1_akz|§ Z (Z) |a1—a0| ST Z (1)
k=n k=n k=0
_ lai —ao| 1 — 747,171%1 < la1 — ao (1)7171
- 4n 1-3 - 3 4
By Theorem 3.4, given € > 0, |a,, — a,| < € holds for n,m > 1. O

Proof for (2). Since a,, is a Cauchy sequence, a,, converges to its limit L.
1 =limap41(2+ ap) =2limapy; + (limay4)(lima,) = 2L + L?,

namely 0 = L? + 2L — 1. Hence, L = —1 4+ /2.
On the other hand, a,, > 0 implies L > 0. Thus, L = —1 4+ /2. O

Problem 5. Let S, T be non-empty sets bounded above. Suppose s,t > 0
holds for all s € S and t € T. Then, we have (sup S)(supT) = sup ST,
where ST = {st : s € S,t € T}.

Proof. By completeness property for sets, sup S and sup T exist. Since s,t >
0,0 < s <supSand 0 <t < supT yields st < (supS)(sup7’), namely
(sup S)(supT) is an upper bound for ST. Therefore,

sup ST < (sup S)(sup 7).

For a fixed s € S, st < sup ST shows that ¢ < (supST)/s holds for all
t € T. Therefore, supT < (supST)/s, namely ssupT < sup ST holds for
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all s € S. Since supT >t > 0, we have s < (supST)/(supT’), namely
sup S < (sup ST)/(supT'). Hence,

sup ST > (sup S)(sup 7).

In conclusion, sup ST = (sup S)(supT).
O

Problem 6. Determine whether the following series are convergent or di-
vergent, and explain why they are convergent or divergent.

WYt oyE oyl ey
1 2 — 3 4 .
2
n=1 2n+1 n=1 3 n=1 n+1 n=1 nt+1
Proof for (1). Diverges. 5.7 = ﬁ, lim% = 0, and Theorem 5.1 give
1 1 1
lim —— = lim —— = —— = = £0.
2n +1 2+ 240 2
By the test for divergence, it diverges. ([
Proof for (2). Converges. We have
1 3 1 1\3
Gntr] L+ D7 Ly (1+-)"
an 3 nd 3 n
So, lim% = 0 and Theorem 5.1 lead to lim|ag—zl| = 1 < 1. Hence, by the
ratio test, it converges. ([

1
vn+1
the Cauchy’s test guarantees the its alternating form is convergent. O

Proof for (3). Converges. Since

is decreasing and converges to zero,

Proof for (4). Diverges. The proof of Example 7.5A in the textbook shows
> % tends to infinity, namely | % tends infinity. Moreover, we have
2

2
= n 1 1
lim |——| = lim i =liml+4+ — =1.
n n2 n2
nZ+1
Therefore, by the asymptotic comparison test, > ng—il also diverges. O

Problem 7. Find the radius of convergence of the following power series,
and explain why.

2n > n

LY % @Y For D

n=0 n=



Proof for (1). For a fixed x, we have

lim {/|z273-"| = lim 22 /3 = 2?/3.
Hence, by the root test, the power series converges if #2/3 < 1 and diverges

if 22/3 > 1, namely converges if |x| < v/3 and diverges if |z| > +/3. Hence,
V/3 is the radius of convergence. ([

Proof for (2). If = 0, it converges to zero. Given a fixed x # 0, we define

Ay = m Then,
Ant1| |x|”+1 2" n+1 || 1+%
an |z 27tin42 0 21427
Combining with lim + = 0 and Theorem 5.1 yields lim |2 | = % Hence,

by the ratio test, the power series converges if |z|/2 < 1 and diverges if
|z|/2 > 1, namely converges if |z| < 2 and diverges if |x| > 2. Hence, 2 is
the radius of convergence. ([l

Problem 8 (Very challenging). Let f(x) be a continuous function defined
on R. Suppose that f(m2™") > 0 holds for all integer m € 7 and natural
number n € N. Show that f(x) > 0 holds for all x € R.

Proof. Let Y denote the set of m2™". Given a point z, we will construct a
sequence y, € Y converging to x. First of all, we let yg,y1 be the integers
m, m+ 1 such that m <z <m+1, and let Iy = [yo,y1] = |a1, b1]. Next, we
set yo = ‘”TH” = % € Y. Then, x must be contained in at least one of
[a1,y2] and [y2,b1]. So, we let Iy = [ag, bs] be the half interval containing z,
and then |by — as| = 3.

We assume that we can iterate the halving process until obtaining I, =
[ak, bg] with ax, by € Y and |by — ai| = Zk—l,l Then, we have aj, = pp2~ %
and b, = r;27 % for some integers p, ry and natural numbers g, sp. Hence,
we can set

ay, + by P25k + 1 29k
Ykl = 7T T T gt ]
Then, = must be contained in at least one of [ak, yr+1] and [yg+1,bk]. So, we
let Ix+1 = [ag, bg] be the half interval containing x, and then |bg11 —ag41| =
2% and agi1,bpr1 €Y.

Hence, by mathematical induction, there exist a nested sequence of closed
intervals I, = [an, by] with a,, b, € Y and |b, — a,| = 2,%1 Since Theorem
3.4 implies lim 2%1 = 0, the nested interval theorem shows that there exists
L € I, and lima, = limb, = L. Moreover, a, < yp+1 < b, and the squeeze
theorem give limy, = L. In addition, we have x = L, because z,L € I,

eY.



10

shows |z — L| < 577 for all n. In conclusion, there exists y, € Y such that
limy, = =.

Since f(z) is continuous, Theorem 11.5A shows lim f(y,) = f(z). Hence,
f(yn) > 0 and the limit location theorem for sequences, we have the desired
result f(z) > 0. O

Problem 9. Let f(x) be a bounded function defined on R, and let F(x) =
Jo f(t)dt. Show that F(x) is continuous on R.

Proof. Since f(x) is bounded, |f(x)| < M for some M > 0. Hence,

rw) - rl = | [ s [ som| =] [ o]

We set fi(t) = max{f(t),0} > 0 and f_(t) = max{—f(¢),0} > 0. Then,
f=fyr—f-and|f| = fy+ f-. Without loss of generality, we assume y > z.
Then, the triangle inequality shows

| / (]| = | / " fo (i - / i < / fet] + | / o
= [sy+ 5= [ 1rwlar< [ var= iy -l
Y Y Y
Therefore, given € > 0, we have |F(z9) — F(z)] < M|z — x| < € for = €

(xo—€/M,x0+¢/M). Namely, F(z) is continuous at any point zp € R. O

Problem 10. Suppose that f(x) is a continuous function defined on R, and
f(z) >0 holds for all x € R. Show that g(x) = +/ f(x) is continuous on R.

Proof. If f(x¢) = 0 at some point xg. Since f(z) is continuous, given € > 0,
|f(x)| < €2 holds for x ~ x¢, namely |g(x)| < € for z ~ xo.
If f(xo) > 0 at some point xg. Then,

|9(o

|_‘ ‘ ) —f@)|
V f (o) +\/7 f(xo)

Since f(z) is continuous, given € > 0, |g(xo) — g(z)| < v/ f(zo) holds for
x & xg, namely |g(zo) — g(x)| < € for z ~ xo.

Problem 11. Suppose that a continuous function f(zx) is defined on [a,b]
with a # b, and f(x) is strictly increasing on (a,b). Show that f(x) is
strictly increasing on |a, b].
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Proof. Assume that f(b) < f(c) for some ¢ € (a,b). Since f is strictly in-
creasing on (a, b), we have f(b) < f(c) < f(m) where m = 5. On the other
hand, f(m) < f(z) for all = € (m,b). Therefore, the limit location theorem
yields f(b) = l_i}gll f(z) > f(m), which contradicts to f(m) > f(c) > f(b).

Hence, f(b) > f(c) for all (a,b), namely f(x) is strictly increasing on (a, b].
In the same manner, we can show that f(x) is strictly increasing on [a, b]
by assuming that f(a) > f(c) for some ¢ € (a,b]. O

Problem 12. Suppose that f(z),g(x) are continuous functions defined on
R. Show that the function h(x) = max{f(x),g(z)} is continuous on R.

Proof. Given a point zg, we assume f(z¢) > g(zo) without loss of generality,
namely h(zg) = f(xo).

If f(xo) = g(zo), then given € > 0 we have |f(z) — h(zo)| < ¢, |g(x) —
h(zo)| < € for © = xp. Then, |h(z) — h(zg)| < € for = xy, because h(zx) is
one of f(x) and g(x).

If o = f(zo) — g(xo) > 0, then we have |f(z) — f(zo)| < /2, |g(x) —
h(zo)| < 0/2 for x ~ xg. Thus,

f(@) = g(x) = (f(z0) — g(z0)) + (f(x) = f(0)) + (9(w0) — g(x))
>0 —|f(x) = fzo)| = lg(x) — g(xo)[ > O,
holds for z ~ xg, namely f(x) = h(z) for z ~ xy. Hence, h(x) is continuous
for z =~ zg. (]

Sample Exam
Solutions for problem 1-5 are given in the proofs above. Sure, the exam
problems will be a bit different form the practice problems.

For problems 6 and 7, let me give you answer keys and hints. You can try
to prove them during the spring break. The bonus problems in the exam
will have totally different style from the practice problems and sample exam
problems.

6. Possible Answers: z%sin(1/z), fxl sin(1/t)dt
7. Hint: consider the 2" order derivative of 1+z+---+2" and plug z = %



